Search results for "Agricultural monitoring"

showing 1 items of 1 documents

Retrieval of aboveground crop nitrogen content with a hybrid machine learning method

2020

Abstract Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-base…

FOS: Computer and information sciencesComputer Science - Machine LearningHeteroscedasticity010504 meteorology & atmospheric sciencesMean squared errorEnMAP0211 other engineering and technologiesGaussian processes02 engineering and technologyManagement Monitoring Policy and LawQuantitative Biology - Quantitative Methods01 natural sciencesMachine Learning (cs.LG)symbols.namesakeHomoscedasticityEnMAPAgricultural monitoringComputers in Earth SciencesGaussian processQuantitative Methods (q-bio.QM)021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesMathematicsRemote sensing2. Zero hungerGlobal and Planetary ChangeInversionHyperspectral imagingImaging spectroscopyRadiative transfer modelingRegressionImaging spectroscopyFOS: Biological sciences[SDE]Environmental SciencessymbolsInternational Journal of Applied Earth Observation and Geoinformation
researchProduct